If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+6x-5=0.
a = 3; b = 6; c = -5;
Δ = b2-4ac
Δ = 62-4·3·(-5)
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-4\sqrt{6}}{2*3}=\frac{-6-4\sqrt{6}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+4\sqrt{6}}{2*3}=\frac{-6+4\sqrt{6}}{6} $
| 82=5(6+6k)-4k | | 4h=1/3=3/4 | | 2^x=500,000 | | k+25/6=6 | | −x=-2.8(3x+5)-2.6x | | 0.5n=-3.5 | | 18(w-950)=594 | | 3(2x+5)=2x+7 | | 25x-8=321 | | 10c−8c−2c+2c=16 | | 3(9+k)=84 | | -9(-6x-9)=351 | | 12-3x+4=5x-16 | | 5(3a+3)=50 | | -7+-3v=5 | | 7y+8y=0 | | (2/3)x^2-7=9 | | 5h-10h=50 | | 731-r=402 | | 10c8c−2c+2c=16 | | y=−2.4+75 | | 30=150/m | | 3(8−x)=15 | | 2x+18=x-7 | | 3.3pp=9 | | 90/x=44/22 | | 17=25-w | | 0.3x-0.9=0.5x+0.7 | | 4/3n+n=-7/12 | | 3(2x+5)=10x+5 | | 5x-7+2x=42 | | 2a2-a-13=2 |